ON THE STRUCTURE OF IDEALS OF THE DUAL ALGEBRA OF A COALGEBRA

BY DAVID E. RADFORD

ABSTRACT. The weak-* topology is seen to play an important role in the study of various finiteness conditions one may place on a coalgebra C and its dual algebra C^* . Here we examine the interplay between the topology and the structure of ideals of C^* . The basic theory has been worked out for the commutative and almost connected cases (see [2]). Our basic tool for reducing to the almost connected case is the classical technique of lifting idempotents. Any orthogonal set of idempotents modulo a closed ideal of Rad C* can be lifted. This technique is particularly effective when $C = C_1$. The strongest results we obtain concern ideals of C_1^* . Using the properties of idempotents we show that C_1 $\Sigma_{x,y} C_x \wedge C_y$ where C_x and C_y run over the simple subcoalgebras of C. Our first theorem states that a coalgebra C is locally finite and C_0 is reflexive if and only if every cofinite ideal of C* contains a finitely generated dense ideal. We show in general that a cofinite ideal I which contains a finitely generated dense ideal is not closed. (In fact either equivalent condition of the theorem does not imply C reflexive.) The preceding statement is true if $C = C_1$, or more importantly if $I \supset \text{Rad } C^*$ and C^*/I is algebraic. The second theorem characterizes the closure of an ideal with cofinite radical which also contains a finitely generated dense ideal.

In this paper we examine some of the basic aspects of the relationship between the weak-* topology and the structure of ideals of the dual algebra of a coalgebra over a field. In [2] and [4] the weak-* topology is seen to play an important role in the study of various finiteness conditions that one may place on a coalgebra. Here we try to put the topological ideas developed in these two references into a more general context.

Regarding a coalgebra C as a C-bicomodule we turn it into a left $C = C \otimes C^{op}$ -comodule. This makes C^* a left $\Rightarrow C^*$ -module. The cyclic submodules are the closures of the principal (two-sided) ideals of C^* . Thus C^* -submodules are ideals, and the finitely generated submodules are the closed ideals of C^* which contain a finitely generated dense ideal (see [2]). If \mathcal{M} is a cofinite maximal ideal of C^* or more generally an algebraic ideal which contains the Jacobson radical Rad C^* , then \mathcal{M} is a C^* -submodule (see [4]). A minor theme of this paper is the connection between the ideals and C^* -submodules.

If all ideals of the C^* are closed then C must be of finite type. For any coalgebra C the finite-dimensional rational C^* -modules are those which have closed cofinite annihilator. If C is reflexive (all cofinite ideals closed) then C is locally finite and C_0 is reflexive (see [2]). We show that the latter condition is

Presented to the Society, April 21, 1973 under the title *Ideals and the weak-* topology* of the dual algebra of a coalgebra over a field k; received by the editors February 5, 1973.

AMS (MOS) subject classifications (1970). Primary 16A66; Secondary 16A32, 16A24, 16A21. Key words and phrases. Coalgebra, structure of ideals, idempotents, weak-* topology.

equivalent to saying that all cofinite \mathcal{C}^* -submodules of C^* are closed, or that each cofinite ideal contains a finitely generated dense ideal.

To require C to be locally finite and C_0 reflexive is not enough to insure that C is reflexive unless $C = C_1$. If $C = C_1$ then a cofinite ideal I of C^* which contains a finitely generated dense ideal must be closed. This is not the case in general, even if $C = C_2$.

The classical technique of lifting idempotents seems to be a very fruitful way of studying C_1 . We show that for a coalgebra C any orthogonal set of idempotents modulo a closed ideal of Rad C^* can be lifted. Cofinite ideals under fairly general circumstances contain nonzero idempotents. Our most useful result is when $C = C_1$ and $e^2 = e \in C^*$, the (e) is a closed ideal provided e (restricted to C_0) is central.

For a coalgebra C write $C_0 = \coprod C_x$ as the direct sum of simple coalgebras. By the methods cited above we show $C_1 = \sum_{x,y} C_x \wedge C_y$ (see also [7]).

In §4 we characterize the closure of certain ideals in terms of $\mathcal{R} = \text{Rad } \mathcal{C}^*$. We first show that an ideal I which contains a finitely generated dense ideal and such that $\text{Rad}(C^*/I)$ is cofinite is closed if C/I^{\perp} is a semisimple \mathcal{C} -comodule. From this we show that the closure of an ideal I which contains a finitely generated dense ideal such that $\text{Rad}(C^*/I)$ is cofinite is $\mathcal{R} \cdot I$.

Throughout this paper we shall freely use the notation and results of [2] and [4].

1. Preliminaries.

1.1. C* as a topological space. For convenience we isolate those topological results found in [2] which will be needed here.

Let V be a vector space. Throughout this paper we shall regard V^* as a topological space with the weak-* topology. The closed subspaces are the annihilators W^{\perp} of subspaces W of V. For a subspace I of V^* let I^{\perp} denote the annihilator of I in V; an important observation is that $\overline{I} = I^{\perp \perp}$. We say that a subspace I contained in I is dense (in I) if $\overline{J} = \overline{I}$.

Let $f: V \to W$ be linear. Then $f^*: W^* \to V^*$ is continuous, and more importantly,

1.1.1. $f^*: W^* \to V^*$ is *linearly closed*, meaning $f^*(I)$ is closed whenever I is a closed subspace of W^* .

Suppose $I, J \subset W^*$ are subspaces such that $\overline{I} = \overline{J}$. Since f^* is continuous $\overline{f^*(I)} = \overline{f^*(J)}$. Combining this observation with 1.1.1 we have

1.1.2. $f^*(\overline{I}) = \overline{f^*(I)}$ for any subspace I of W*.

Let N be a left C-comodule. Then N^* is a left C^* -module. For a fixed $n^* \in N^*$ the map $L_{n^*} : C^* \to N^*$ defined by $L_{n^*}(c^*) = c^* n^*$ is continuous and linearly closed $(L_{n^*} = f^*$ where $f: N \to C$ is defined by $f(n) = \sum n_{(1)} \langle n^*, \underline{n}_{(2)} \rangle$). Since the sum of closed subspaces is closed, finitely generated submodules of N^* are closed.

The focus of this whole discussion is the following basic example.

1.1.3. Let C be a coalgebra and C^{op} denote the coalgebra C with "twisted"

structure, set $\mathcal{C} = C \otimes C^{\text{op}}$. Then (C, ω) is a left \mathcal{C} -module $(\omega(c) = \sum c_{(1)} \otimes c_{(3)} \otimes c_{(2)} \in \mathcal{C} \otimes C)$. Now $\mathcal{A} = C^* \otimes C^{*\text{op}}$ is a dense subalgebra of \mathcal{C}^* and the module action on C^* restricted to \mathcal{A} is determined by $a \otimes b \cdot c^* = ac^*b$ for $a \otimes b \in \mathcal{A}$ and $c^* \in C^*$. Thus, by 1.1.2,

1.1.4. $\mathcal{C}^* \cdot a = \overline{\mathcal{A} \cdot a} = \overline{(a)}$, where (a) is the principal (two-sided) ideal generated by $a \in C^*$.

This means that \mathcal{C}^* -submodules of C^* are ideals, and that closed ideals of C^* are \mathcal{C}^* -submodules.

Furthermore (1.3.5 of [2]),

- 1.1.5, the finitely generated \mathcal{C}^* -modules of \mathcal{C}^* are the closed ideals which contain a finitely generated dense ideal.
- 1.2. Semisimple C*-modules. The ideas in this section are of relevance primarily to §4.

For a coalgebra C let $R(C) = C/C_0^+$ where $C_0^+ = C_0 \cap \ker \varepsilon$. Then R(C) is connected, and moreover the coradical filtration of each is related in a natural way. For if $\pi: C \to R(C)$ is the natural projection then

1.2.1. $\pi(C_n) = R(C)_n$ for all $n \ge 0$.

It is shown in [2] that $C_0^{\perp} = \text{Rad } C^*$, the Jacobson radical of C^* . Thus,

1.2.2. $R(C)^* = \text{Rad } C^* \oplus k \cdot \varepsilon$.

Notation. If C is a coalgebra and $\mathcal{C} = C \otimes C^{op}$, set $\mathcal{J} = \operatorname{Rad} \mathcal{C}^*$ and $\mathcal{R} = R(\mathcal{C})^*$.

- **1.2.3. Lemma.** Let N be a simple left C-comodule. Then N is a D-comodule for some simple subcoalgebra D of C.
- **Proof.** Since N is simple, $N = n \leftarrow C^*$ for any fixed $0 \neq n \in N$. But I_n (the annihilator of n) is a cofinite maximal right ideal of C^* . Thus the annihilator \mathcal{M} of N is a cofinite primitive (hence maximal) ideal of C^* . Let $D = \mathcal{M}^{\perp}$. Q.E.D.

For a left C-comodule N let N_0 denote the sum of the simple subcomodules of N.

- **1.2.4. Lemma.** Let N be a left C-comodule and $J = \text{Rad } C^*$. Then $N_0 = \{n \in \mathbb{N}: n \leftarrow J = (0)\}$, so $N_0 = (J \cdot N^*)^{\perp}$.
- **Proof.** $M = \{n \in \mathbb{N}: n \leftarrow J = (0)\}$ is a submodule of N, in fact a C_0 -comodule since $J^{\perp} = C_0$. By 14.0.1, p. 288 of [6], $M \subset N_0$. By 1.2.3, $N_0 \subset M$. The rest is clear. Q.E.D.

For a left C^* -module M let Rad M denote the intersection of all maximal submodules of M.

- **1.2.5. Proposition.** Suppose N is a left C-comodule and N^* is a finitely generated C^* -module. If $J = \text{Rad } C^*$, then
 - (1) Rad $N^* = J \cdot N^*$ and
 - (2) $0 \rightarrow J \cdot N^* \rightarrow N^* \rightarrow N_0^* \rightarrow 0$ is exact.

Proof. $J \cdot N^*$ is closed since J is a closed ideal and N^* is finitely generated. Thus $J \cdot N^* = (J \cdot N^*)^{\perp \perp} = N_0^{\perp}$. The result is now immediate. Q.E.D.

- **1.2.6.** Corollary. Suppose N is a left C-comodule and M is a finitely generated submodule of N^* . Then Rad $M = J \cdot M$.
- **Proof.** M is closed, so the projection $N \to N/M^{\perp} = Q$ induces an inclusion of C^* -modules $Q^* \to {}^{\!\!\!\!u} N^*$ with $u(Q^*) = M$. By the previous proposition Rad $M = u(\operatorname{Rad} Q^*) = u(J \cdot Q^*) = J \cdot M$. Q.E.D.
- 2. Ideals and \mathcal{C}^* -submodules. In this section we examine the relationship between ideals and the \mathcal{C}^* -submodules of C^* . It turns out that the classical technique of lifting idempotents is particularly useful in this regard when $C = C_1$.
- 2.1. C as a C-comodule. In Example 1.1.3, we introduced the left $C = C \otimes C^{op}$ -comodule action on a coalgebra C. If N is a C-bicomodule (a left and right C-comodule with commuting actions) then the map $\omega \colon N \to C \otimes N$ ($\omega(n) = \sum n_{(1)} \otimes n_{(3)} \otimes \underline{n}_{(2)}$) turns N into a left C-comodule; and the subbicomodules (C^* -subbimodules) are the left C-subcomodules. The following statements are immediate.
- 2.1.1. The category of left \mathcal{C} -comodules and the category of C-bicomodules are isomorphic.
 - 2.1.2. The subcoalgebras of C (C^* -subbimodules) are the \mathcal{C} -subcomodules.
 - 2.1.3. $\Delta: C \to \mathcal{C}(\Delta c = \sum c_{(1)} \otimes c_{(2)})$ is a map of \mathcal{C} -comodules.
- 2.1.4. Suppose $\pi\colon C\to D$ is a map of coalgebras. Then $\Pi=\pi\otimes\pi\colon\mathcal{C}\to \mathcal{D}$ ($\mathfrak{D}=D\otimes D^{\mathrm{op}}$) is a map of coalgebras. Thus (by pushout) C is a left \mathfrak{D} -comodule. The algebra map $\Pi^*\colon \mathfrak{D}^*\to \mathcal{C}^*$ induces (by pull-back) a left \mathfrak{D}^* -module structure on C^* . This is the transpose of the \mathfrak{D} -comodule structure on C.
- 3.17 of [4] gives the first important connection between ideals and \mathcal{C}^* -modules.

For an ideal I of C^* let Rad(I) denote the intersection of all maximal ideals lying above I. Recall that a k-algebra A is called *algebraic* if k[a] is finite dimensional for all $a \in A$, and we call an ideal I of A algebraic if A/I is an algebraic algebra.

2.1.5. Proposition. (3.17 of [4]). Suppose C is any coalgebra and I an algebraic ideal of C^* containing Rad C^* . Then I is a C^* -module.

The following elementary observation is useful.

- 2.1.6. Suppose C is a coalgebra and I is a closed ideal of C^* . Then Rad(I) is closed.
- **Proof.** If $D = I^{\perp}$ then $0 \to I \to C^* \to {}^{u}D^* \to 0$ is exact, where u is the restriction map. It is clear that $Rad(I) = u^{-1}(Rad D^*)$. But Rad D^* is closed, thus Rad(I) is also since u is continuous. Q.E.D.
- 2.1.7. Proposition. Suppose I is an ideal of C* which contains a finitely generated dense ideal. If all maximal ideals which contain I are algebraic, then Rad(I) is closed.
 - **Proof.** Suppose (a_1, \ldots, a_n) is dense in I. Then $\bar{I} = \mathcal{C}^* \cdot a_1 + \cdots + \mathcal{C}^* \cdot a_n$

- $\subset \mathcal{C}^* \cdot I \subset \overline{I}$ implies $\overline{I} = \mathcal{C}^* \cdot I$. If \mathcal{M} is a maximal ideal which contains I, then $\overline{I} = \mathcal{C}^* \cdot I \subset \mathcal{M}$ by 2.1.5. Thus $\operatorname{Rad}(I) = \operatorname{Rad}(\overline{I})$ and the conclusion follows by 2.1.6. Q.E.D.
- **2.1.8. Proposition.** Suppose I contains a finitely generated dense ideal. Then I is dense (in C^*) if and only if no proper algebraic ideal contains I.
- **Proof.** (\Rightarrow) If $I \subset J$ where J is a proper algebraic ideal, then there is a maximal ideal \mathcal{M} lying over J, and \mathcal{M} is necessarily algebraic. Thus $\overline{I} = \mathcal{C}^* \cdot I \subset \mathcal{M}$ by 2.1.5, so $\overline{I} \neq C^*$.
- (\Leftarrow) Let $D = I^{\perp}$. Then we have the exact sequence $0 \to \overline{I} \to C^* \to D^* \to 0$. Thus D = (0); otherwise there is a proper cofinite maximal ideal lying over I. Q.E.D.
- In §2.2, we will show that when $C = C_1$ a cofinite ideal of C^* contains a cofinite C^* -submodule under fairly general circumstances. An essential step of the argument depends on Corollary 2.1.10 of the following statement:
- **2.1.9. Proposition.** Suppose $\pi\colon C\to D$ is a surjective map of coalgebras with $\ker \pi$ finite dimensional. Then every cofinite ideal of C^* contains a cofinite C^* -submodule if and only if every cofinite ideal of D^* contains a cofinite D^* -submodule.
- **Proof.** The induced algebra map $u = \pi^* : D^* \to C^*$ is injective and $A = \pi^*(D^*)$ is a cofinite subalgebra of C^* .
- (⇒) Suppose I is a cofinite ideal of D^* . Then u(I) is a cofinite ideal of A. Thus $M = C^*/u(I)$ is a finite-dimensional left A-module, so $JC^* \subset u(I)$ for some cofinite ideal J of A. But JC^* is a cofinite right ideal of C^* ; thus the annihilator L of the right C^* -module C^*/JC^* is a cofinite ideal of C^* and $L \subset JC^* \subset u(I)$. By assumption there is a cofinite C^* -module $K \subset L$. Therefore $u^{-1}(K)$ is a D^* -submodule of D^* and $u^{-1}(K) \subset u^{-1}(u(I)) = I$.
- (\Leftarrow) Let I be a cofinite ideal of C^* . Then $J=u^{-1}(I)$ is a cofinite ideal of D^* . By assumption there is a cofinite \mathfrak{D}^* -submodule $J_1 \subset J$. Since u is also a map of \mathfrak{D}^* -modules by 2.1.4, $I_1=u(J_1)$ is a cofinite \mathfrak{D}^* -submodule of C^* . Now Δ^* : $\mathcal{C}^* \to C^*$ is a map of \mathcal{C}^* -modules by 2.1.3, hence a map of \mathfrak{D}^* -modules. Therefore $\gamma_1 = \Delta^{*-1}(I_1)$ is a cofinite \mathfrak{D}^* -submodule of \mathcal{C}^* . Since $A=u(D^*)$ has finite codimension, the dense subalgebra $C^* \otimes C^{*op}$ of \mathcal{C}^* is a finitely generated left $D^* \otimes D^{*op}$ -module. Therefore, by 2.1.4 again, \mathcal{C}^* is a finitely generated left \mathfrak{D}^* -module. Now $M=\mathcal{C}^*/\gamma_1$ is a finite-dimensional left \mathcal{C}^* -module, so $\mathcal{L}\mathcal{C}^* \subset \gamma_1$ for some cofinite ideal \mathcal{L} of \mathcal{D}^* . By 1.3.8 of [3], the right ideal $\mathcal{L}\mathcal{C}^*$ of \mathcal{C}^* is cofinite. Hence there is a cofinite ideal γ of \mathcal{C}^* (see the preceding paragraph) with $\gamma \subset \mathcal{L}\mathcal{C}^*$. $\Delta^*(\gamma)$ is a cofinite \mathcal{C}^* -submodule of C^* , and $\Delta^*(\gamma) \subset \Delta^*(\gamma_1) \subset I_1 = u(J_1) \subset I$. Q.E.D.
- **2.1.10.** Corollary. Suppose $C = C_1$ and is almost connected. Then every cofinite ideal of \mathcal{C}^* contains a cofinite \mathcal{C}^* -submodule.
- **Proof.** The projection $C \to^{\pi} R(C)$ is surjection and ker $\pi = C_0^+$ is finite dimensional. If $J = \text{Rad } C^*$ then $J^2 = (0)$. By 1.2.2, $R(C)^* = J \oplus k \cdot 1$ so $R(C)^*$ is commutative.

The result follows easily from 1.1.4 and the preceding proposition, since principal left ideals are closed. Q.E.D.

- 2.2. On lifting idempotents. Let C be any coalgebra. We first show that any orthogonal set of idempotents modulo a closed ideal $I \subset \text{Rad } C^*$ can be lifted to an orthogonal set of idempotents.
- **2.2.1. Lemma.** Suppose C is a finite-dimensional coalgebra, D a subcoalgebra with $C_0 \subset D$. If $\{e_1, \ldots, e_n\} \subset D^*$ is an orthogonal set of nonzero idempotents, there exists an orthogonal set of idempotents $\{u_1, \ldots, u_n\} \subset C^*$ with $u_i \equiv e_i$ on D for all $1 \leq i \leq n$.
- **Proof.** Let $I = D^{\perp}$. Then $I \subset C_0^{\perp} = \text{Rad } C^*$. We have the exact sequence $0 \to I \to C^* \to D^* \to 0$ where u is the restriction map. Choose $a_1, \ldots, a_n \in C^*$ with $u(a_i) = e_i$ for all $1 \le i \le n$. Then $\{a_1, \ldots, a_n\}$ is an orthogonal set of nonzero idempotents modulo I, so, by Proposition 2 on p. 73 of [1], there exists an orthogonal set of idempotents $u_1, \ldots, u_n \in C^*$ with $u_i a_i \in I$, i.e., $u_i \equiv e_i$ on D for all $1 \le i \le n$. Q.E.D.
- **2.2.2. Proposition.** Let C be any coalgebra and D a subcoalgebra with $D \supset C_0$. If $\{e_{\alpha}\} \subset D^*$ is an orthogonal set of idempotents then there exists an orthogonal set of idempotents $\{u_{\alpha}\} \subset C^*$ with $u_{\alpha} \equiv e_{\alpha}$ on D for all α .
- **Proof.** Let \mathfrak{I} be the family of all pairs $(E, \{v_{\alpha}\})$ where E is a subcoalgebra such that $D \subset E$, and $\{v_{\alpha}\} \subset E^*$ is an orthogonal set of idempotents satisfying $v_{\alpha} = e_{\alpha}$ on D. Then \leq defines a partial order of \mathfrak{I} , where $(E, \{v_{\alpha}\}) \leq (F, \{w_{\alpha}\})$ denotes $E \subset F$ and $w_{\alpha} = v_{\alpha}$ on E all α . Zorn's lemma applies; thus there is a maximal element $(E, \{w_{\alpha}\}) \in \mathfrak{I}$.

Suppose F is a finite-dimensional subcoalgebra of C. Then $F_0 = C_0 \cap F \subset E \cap F$. Since nonzero orthogonal idempotents are independent, the set $\{v'_{\alpha}\}$ has only finitely many nonzero elements $(v'_{\alpha}$ is v_{α} restricted to $E \cap F$). By 2.2.1, there exists an orthogonal set of idempotents $\{w_{\alpha}\} \subset F^*$ with $w_{\alpha} = v_{\alpha}$ on $E \cap F$. It is easy to see that the rule $u_{\alpha}(e+f) = v_{\alpha}(e) + w_{\alpha}(f)$ defines a functional $u_{\alpha} \in (E+F)^*$ for all α and that $(E+F,\{u_{\alpha}\}) \in \mathcal{P}$. This implies E=C. Q.E.D.

An immediate consequence of 2.2.2 is the following:

- 2.2.3. Let C be a coalgebra, D a subcoalgebra such that $C_0 \subset D$, and $e^2 = e \in D^*$. There exists an idempotent $u \in C^*$ with $u \equiv e$ on D.
- **2.2.4.** Corollary. Suppose C is a coalgebra and I is a cofinite ideal of C^* with Rad(I) closed. There is an idempotent $e \in I$ which is central (when restricted to C_0) and such that Rad(I) = Rad(e).
- **Proof.** We have the exact sequence $0 \to \text{Rad } C^* \to C^* \to {}^u C_0^* \to 0$ where u is the restriction map. Since J = Rad(I) is closed, u(J) is closed. By 3.5.1 of [2], u(Rad(I)) = (f) for some central idempotent $f \in C_0^*$. By 2.2.3, there is an idempotent $e \in C^*$ with u(e) = f. Thus $e \in J = u^{-1}(u(J))$, and since $J^n \subset I$

some n, we see that $e = e^n \in I$. It is clear that Rad((e)) = J. Q.E.D.

- **2.2.5. Remark.** Suppose $\{e_{\alpha}\}$ is *any* orthogonal set of idempotents of C^* . Then $e = \sum e_{\alpha}$ is defined since all but finitely many of the e_{α} 's vanish on a given finite-dimensional subcoalgebra (nonzero orthogonal idempotents are independent). Clearly $e^2 = e$.
- **2.2.6. Corollary.** Let C be any coalgebra, D a subcoalgebra with $C_0 \subset D$. Suppose $\{f_{\alpha}\} \subset D^*$ is an orthogonal set of idempotents with $\varepsilon = \sum f_{\alpha}$. There exists an orthogonal set of idempotents $\{e_{\alpha}\} \subset C^*$ such that $\varepsilon = \sum e_{\alpha}$ and $e_{\alpha} \equiv f_{\alpha}$ on D for all α .

Proof. By 2.2.2, there exists an orthogonal set of idempotents $\{e'_{\alpha}\}$ with $e'_{\alpha} \equiv f_{\alpha}$ on D. Fix a particular α , say α_0 , and set

$$e_{\alpha} = e'_{\alpha},$$
 $\alpha \neq \alpha_{0},$
 $= \varepsilon - \sum_{\alpha \neq \alpha_{0}} e'_{\alpha},$ $\alpha = \alpha_{0}.$

Then $\{e_{\alpha}\}$ is an orthogonal set of idempotents which meets our criteria. Q.E.D. Now suppose $e, f \in C^*$ are any idempotents and write $e + e' = \varepsilon = f + f'$. 2.2.7. $(e \rightarrow C \leftarrow f)^{\perp} = C^* \cdot e' + f' \cdot C^*$, so for subspaces $V, W \subset e \rightarrow C \leftarrow f$ it follows that $V \land W \subset e \rightarrow C \leftarrow f$.

Proof. That $(e \rightarrow C)^{\perp} = C^* \cdot e'$ and $(C \leftarrow f)^{\perp} = f' \cdot C^*$ is easy to verify. So

$$(e \rightarrow C \leftarrow f)^{\perp} = (e \rightarrow C \cap C \leftarrow f)^{\perp}$$
$$= (e \rightarrow C)^{\perp} + (C \leftarrow f)^{\perp}$$
$$= C^* \cdot e' + f' \cdot C^*.$$

If $I = (e \rightarrow C \leftarrow f)^{\perp}$ then $I \subset I^2$ since e' and f' are idempotents. Therefore,

$$(e \rightarrow C \leftarrow f) \land (e \rightarrow C \leftarrow f) = (I^2)^{\perp} \subset I^{\perp} = e \rightarrow C \leftarrow f.$$
 Q.E.D.

2.2.8. If D, E are subcoalgebras of C and $c \in D \land E$ then

$$\Delta e \rightharpoonup c \leftharpoonup f \in C \leftharpoonup f \otimes e \rightharpoonup E + D \leftharpoonup f \otimes e \rightharpoonup C.$$

Proof. For $a, b \in C^*$ we have $\Delta a \rightarrow c \leftarrow b = \sum c_{(1)} \leftarrow b \otimes a \rightarrow c_{(2)}$, so

$$\Delta e \rightharpoonup c \leftharpoonup f \in (C \otimes E + D \otimes C) \cap C \leftharpoonup f \otimes e \rightharpoonup C$$

$$= C \leftharpoonup f \otimes e \rightharpoonup E + D \leftharpoonup f \otimes e \rightharpoonup C. \quad Q.E.D.$$

2.2.9. Lemma. If $e
ightharpoonup C_0
ightharpoonup e$ is a subcoalgebra then so is $e
ightharpoonup C_1
ightharpoonup e$; in fact, $e
ightharpoonup C_1
ightharpoonup e = (e
ightharpoonup C_0
ightharpoonup e) \lambda(e
ightharpoonup C_0
ightharpoonup e).$

Proof. If $e
ightharpoonup C_0
ightharpoonup e$ is a subcoalgebra, then $e
ightharpoonup C_0 = e
ightharpoonup C_0
ightharpoonup e$ is the direct sum of simple coalgebras. By 2.2.7, $(e
ightharpoonup C_0)$

$$\wedge$$
 $(C_0 \leftarrow e) \subset (e \rightarrow C \leftarrow e) \cap C_1 = e \rightarrow C_1 \leftarrow e$. By 2.2.8, $e \rightarrow C_1 \leftarrow e \subset (e \rightarrow C_0) \wedge (C_0 \leftarrow e)$. Q.E.D.

2.2.10. Corollary. If $e
ightharpoonup C_0
ightharpoonup e = f
ightharpoonup C_0
ightharpoonup f$ and is a coalgebra, then $e
ightharpoonup C_1
ightharpoonup e = f
ightharpoonup C_1
ightharpoonup f$.

Remark. If $e
ightharpoonup C_1
ightharpoonup e$ is a coalgebra we cannot conclude that $e
ightharpoonup C_2
ightharpoonup e$ is also in general. The smallest possible example demonstrating this must be at least five dimensional. One such is the following:

Let C have basis 1, z, v, w, and x and define

$$\Delta 1 = 1 \otimes 1,$$

$$\Delta z = z \otimes z,$$

$$\Delta v = v \otimes z + 1 \otimes v,$$

$$\Delta w = w \otimes 1 + z \otimes w,$$

$$\Delta x = x \otimes 1 + v \otimes w + 1 \otimes x,$$
 $\varepsilon(1) = 1 = \varepsilon(z),$

$$\varepsilon(v) = \varepsilon(w) = \varepsilon(x) = 0.$$

If e(1) = 1, e(z) = e(v) = e(w) = e(x) = 0 then $e^2 = e$ and $e \rightarrow C \leftarrow e$ is spanned by 1 and x. See also Example 3.4.

2.2.11. Let C be a coalgebra and write $C_0 = \coprod C_x$, where C_x is simple for all x. Then $C_1 = \sum_{x,y} C_x \wedge C_y$.

Proof. For each x we can find in C_0^* idempotents ε_x such that $\varepsilon_x \to C_0 = C_x = C_0 \leftarrow \varepsilon_x$. $\{\varepsilon_x\}$ is orthogonal and $\sum \varepsilon_x = \varepsilon$. By 2.2.6, we can find an orthogonal set of idempotents $\{e_x\} \subset C^*$ such that $\sum e_x = \varepsilon$ and $e_x \equiv \varepsilon_x$ on C_0 . Notice

$$C = \bigoplus_{x,y} e_x \rightharpoonup C \leftharpoonup e_y.$$

If $c \in e_x \to C \leftarrow e_y$ then $c = e_x \to c \leftarrow e_y$, so if $c \in C_1$ in addition, by 2.2.8, $\Delta c \in C \otimes e_x \to C_0 + C_0 \leftarrow e_y \otimes C$. Therefore $c \in C_y \wedge C_x$. Q.E.D.

Remarks. Suppose in 2.2.11, $C = C_1$ and is pointed. Write $C_0 = k(X)$ and set $C_x = k \cdot x$ for $x \in X$. If $x \neq y$ and $c \in e_x \rightarrow C \leftarrow e_y$ then one sees that $\Delta c = c \otimes x + y \otimes c$, and $e_x \rightarrow C \leftarrow e_y = \{c \in C: \Delta c = c \otimes x + y \otimes c\}$. This gives the characterization of pointed coalgebras $C = C_1$ discovered by Taft and Wilson (see [7]).

Combining 2.2.9 with 2.2.7 we have

2.2.12. Let $C = C_1$ and $e^2 = e \in C^*$ such that $e \rightharpoonup C_0 \leftharpoonup e$ is a coalgebra. Then (e) is closed; in fact (e) = $C^* \cdot e + e \cdot C^*$.

Now suppose C is a coalgebra and Rad C^* is nil. If I is an ideal such that Rad(I) is closed, by Proposition 1 on p. 72 of [1] and 3.5.1 of [2], there is an idempotent $e \in I$ which is central (when restricted to C_0) and such that Rad(I) = Rad(I). Let I = I = I0. If I1 = I1, we have the exact sequence (I2 the restriction map)

(*)
$$0 \to (e) = C^* \cdot e + e \cdot C^* \to C^* \xrightarrow{u} D^* \to 0$$

and $u(I) \subset \text{Rad } D^*$.

- **2.2.13. Proposition.** Suppose $C = C_1$ is a coalgebra, and I a cofinite ideal with Rad(I) closed. Then I contains a cofinite C^* -submodule.
- **Proof.** $D = D_1$ since $C = C_1$ for any subcoalgebra D of C. The result follows immediately from (*) and 2.1.10 since u is a map of C^* -modules. Q.E.D.
- **2.2.14. Lemma.** Let C be any coalgebra, $I \subseteq \text{Rad } C^*$ an ideal. If $I^2 + V$ is a dense subspace of I, then $C^* \cdot V$ is a left ideal dense in I.
- **Proof.** Let D be a finite-dimensional subcoalgebra and $u: C^* \to D^*$ the restriction map. It suffices to show $u(C^* \cdot V) = u(I)$. But $u(I) = u(I^2 + V) = u(I)^2 + u(C^* \cdot V)$. Thus we may assume C = D and $I^2 + C^* \cdot V = I$. By induction, $I^n + C^* \cdot V = I$ for all n. Since I is nilpotent, $C^* \cdot V = I$. Q.E.D.
- **2.2.15.** Corollary. Suppose $I \subset \text{Rad } C^*$ is an ideal and $I^2 + V$ is dense in I for some finite-dimensional V. Then I^n is finitely generated as a left ideal (hence closed) and a cofinite subspace of I for all n.
- **Proof.** By 2.2.14, the closed left ideal $C^* \cdot V$ is dense in I; thus $C^* \cdot V = I$. Suppose a_1, \ldots, a_r span V. Then $I^2 = Ia_1 + \cdots + Ia_r$, implies that I is a finitely generated left ideal of $A = I \oplus k \cdot \varepsilon$. The rest follows by 1.1.1 of [2]. Q.E.D.

It should be noted that if $C = C_n$ for some n then the ideal in 2.2.15 is in fact finite dimensional.

- **2.2.16. Proposition.** Suppose $C = C_1$ and I is an ideal of C^* such that Rad(I) is closed. If $I^2 + V$ is dense in I for some finite-dimensional V, then $I = C^* \cdot a_1 + \cdots + C^* \cdot a_n + b \cdot C^*$ for some $a_1, \ldots, a_n, b \in I$.
- **Proof.** Consider (*). u(I) satisfies the hypothesis of the proposition. By 2.2.15, u(I) is finite dimensional. The conclusion now quickly follows. Q.E.D.
- **2.2.17. Proposition.** Suppose $C = C_1$ and I is an ideal of C^* with Rad(I) cofinite. If I contains a finitely generated dense ideal then $I = C^* \cdot a_1 + \cdots + C^* \cdot a_n + b \cdot C^*$ for some $a_1, \ldots, a_n, b \in C^*$.
- **Proof.** By 2.1.7, Rad(I) is closed. First assume C is almost connected and $I \subset \text{Rad } C^*$. Let $A = \text{Rad } C^* \oplus k \cdot \varepsilon$. Since $\dim(C^*/A) < \infty$ the dense ideal L of I is generated as an ideal of A by a_1, \ldots, a_r , say. Since A is commutative $L = A \cdot a_1 + \cdots + A \cdot a_r = \overline{L}$ which implies L = I. Now we use (*) to complete the proof. Q.E.D.

We can generalize 2.2.16 to any coalgebra. The conclusion, however, will not be quite as sharp.

2.2.18. Proposition. Let C be any coalgebra and I an ideal of C^* with Rad(I) closed. If $I^2 + V$ is dense in I for some finite-dimensional V, then I^n contains a finitely generated dense ideal and $\overline{I^n}$ is a cofinite subspace of \overline{I} for all n.

Proof. By 3.5.1. of [2] and 2.2.3, $J = \operatorname{Rad}(\overline{I}) = \operatorname{Rad}(I) = \operatorname{Rad}((e))$ for some idempotent e. If $D = (e)^{\perp}$ we have the exact sequence $0 \to \overline{(e)} \to C^* \to^u D^*$ $\to 0$, where u is the restriction map, and $u(J) = \operatorname{Rad}D^*$. But $e \in J$ implies $e \in \bigcap J^n \subset \overline{I}$, so $\overline{(e)} \subset \overline{I^n} = \overline{I^n}$ for all n. By 2.2.14, $\overline{I^n} = u^{-1}(u(I^n))$ is a cofinite subspace of $\overline{I} = u^{-1}(u(I))$. The remaining part will follow once we observe that if $a \in I$ and u(a) = u(e) then $\overline{(e)} \subset \overline{(a^n)}$ for all n. Q.E.D.

If $I \subset C^*$ is an ideal then Rad(\overline{I}) is closed by 2.1.6. Thus

- **2.2.19.** Corollary. Suppose C is any coalgebra, I an ideal of C^* such that $I^2 + V$ is dense in I for some finite-dimensional V. Then $\overline{I^n}$ is an ideal cofinite in \overline{I} for all n.
- 3. Locally finite coalgebras. It has been shown in [2] that C reflexive implies C is locally finite and the coradical C_0 is reflexive. The converse is true in the commutative case, but even the hypothesis that the second term of the coradical filtration C_1 is reflexive does not as much imply that C_2 is reflexive in general. We find in this section a topological description of locally finite coalgebras with C_0 reflexive which gives the commutative theorem as a special case. First we need partial generalization of 3.2.1 of [1].
- **3.1. Lemma.** Suppose $C = C_1$ and is almost connected. If all cofinite C^* -modules of C^* are closed, then C is finite dimensional.
- **Proof.** All maximal ideals of C^* are closed since Rad $C^* = C_0^{\perp}$ is cofinite. Since cofinite \mathcal{C}^* -modules are closed by assumption, by 2.1.12 every cofinite ideal of C^* is closed. Thus C is reflexive. By 3.2.1 of [2], C is finite dimensional. Q.E.D.
 - **3.2. Theorem.** Let C be any coalgebra. Then the following are equivalent:
 - (1) C_0 is reflexive and C is locally finite.
 - (2) All cofinite C*-modules of C* are closed.
 - (3) Every cofinite ideal of C* contains a finitely generated dense ideal.
- **Proof.** (1) \Rightarrow (2). Let I be a cofinite \mathcal{C}^* -module of C^* . Then $\operatorname{Rad}(I) = J$ is closed since C_0 is reflexive; so if $C^* \to^u C_0^*$ is the projection we conclude u(J) = (u(a)) for some $a \in I$. Let $D = (a)^{\perp}$. Then $D_0 = J^{\perp}$ and is therefore finite dimensional. Since C is locally finite D_1 is finite dimensional, and this implies D is strongly reflexive by 4.1.1 of [2]. Since $\mathcal{C}^* \cdot a = \overline{(a)}$ we have the exact sequence $0 \to \mathcal{C}^* \cdot a \to C^* \to^{\pi} D^* \to 0$. But $\pi(I)$ is finitely generated as a left ideal of D^* so, by 2.1.4, $I = \pi^{-1}(\pi(I))$ is a finitely generated \mathcal{C}^* -module. This means that I is closed.
- (2) \Rightarrow (3). Let I be a cofinite ideal of C^* . Then $\mathcal{C}^* \cdot I = E^{\perp}$ where E is a finite-dimensional subcoalgebra of C. If $D = E_0 \wedge E_0$, then $D_0 = E_0$ and, using 2.1.4, we see the cofinite \mathcal{D}^* -modules of D^* are closed. By 3.1, $D = D_1$ is finite dimensional. Since $D \wedge D \subset \wedge^n D_0$ some n we have that $D \wedge D$ is finite dimensional by 4.2.2 of [2]. By the same theorem $\mathcal{C}^* \cdot I$ is a finitely generated submodule. It is easy to find generators in I. Since $\mathcal{C}^* \cdot I = \overline{I}$, we are done.
 - (3) \Rightarrow (1). By 2.1.5 all cofinite maximal ideals of C^* are closed, so C_0 is reflexive

by 3.5.3 of [2]. By 4.2.2 of [2], C is locally finite. Q.E.D.

If $C = C_1$ we can make a much stronger statement.

- **3.3. Corollary.** Suppose $C = C_1$. Then the following are equivalent:
- (1) C_0 is reflexive and C is locally finite.
- (2) C is reflexive.
- (3) If I is a cofinite ideal of C^* , then $I = C^* \cdot a_1 + \cdots + C^* \cdot a_n + b \cdot C^*$ for some $a_1, \ldots, a_n, b \in I$.

Proof. (1) \Leftrightarrow (3) follows by 3.2 and 2.2.17.

- $(3) \Rightarrow (2)$ is clear since principal left (or right) ideals of C^* are closed.
- $(2) \Rightarrow (1)$ is clear. Q.E.D.

Remarks. (1) If C is commutative, then $C^* \cdot a = (a)$ so Theorem 3.2 gives the essence of 5.1.1 of [2].

- (2) If C_0 is reflexive (which one may reasonably expect for infinite fields k; see §3.7 of [2]) then 3.2 gives a topological formulation of local finiteness. C_0 reflexive and C locally finite does not necessarily imply C_2 reflexive. This means 3.3 cannot be improved in general.
- **3.4. Example.** Let k be an infinite field, and let N denote the set of positive integers. For $1 < n \in N$ choose vector spaces $V(n) \simeq k^n \simeq W(n)$, set $V = \bigoplus_n V(n)$, $W = \bigoplus_n W(n)$ and $V \cdot W = \bigoplus_n V(n) \otimes W(n)$ (let $v \cdot w = v \otimes w$ for $v \in V(n)$ and $w \in W(n)$). Endow $C = N \oplus V \oplus W \oplus V \cdot W$ with the coalgebra structure determined by

$$\Delta n = n \otimes n,$$

$$\Delta v = v \otimes n + 1 \otimes v,$$

$$\Delta w = w \otimes 1 + n \otimes w,$$

$$\Delta v \cdot w = v \cdot w \otimes 1 + v \otimes w + 1 \otimes v \cdot w,$$

$$\varepsilon(v) = 0,$$

$$\varepsilon(w) = 0,$$

$$\varepsilon(w) = 0,$$

$$\varepsilon(v \cdot w) = 0 \text{ for all } v \in V(n)$$
and $w \in W(n)$.

One can check easily that $C_0 = k^{(N)}$, so is reflexive by 3.6 of [4]; and that $C_1 = N \oplus V \oplus W$ and is locally finite, so C is also.

Let $\mathcal{M}=1^{\perp}$. Then \mathcal{M} is a maximal ideal of C^* . The functionals \mathcal{M}^2 restricted to $V\cdot W$ is a proper dense subspace. Thus $\mathcal{M}^2\subseteq \mathcal{M}$ and \mathcal{M}^2 is not closed. Since $C^*=k\cdot \varepsilon \oplus \mathcal{M}$, any subspace I satisfying $\mathcal{M}^2\subset I\subset \mathcal{M}$ is an ideal. Therefore there are cofinite ideals I which are not closed satisfying $\mathcal{M}^2\subset I\subset \mathcal{M}$. This means C is not reflexive.

Remarks. In the preceding example $k \cdot 1 \wedge k \cdot 1 = k \cdot 1$. Suppose $e \in C^*$ is any idempotent satisfying $e(n) = 1 - \delta_{1,n}$. Then

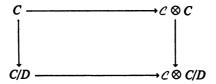
- (1) $(e) = \mathcal{M}$, so (e) is not closed since $(e) \subset \mathcal{M}^2$;
- (2) if $\mathcal{M}^2 \subset I \subset \mathcal{M}$, then $e \in I$; therefore $\overline{(e)} = \overline{I}$. Thus a cofinite ideal which contains a finitely generated dense ideal is not necessarily closed.
- 4. The closure of an ideal. Example 3.4 shows that in general a cofinite ideal of C* which contains a finitely generated dense ideal is not closed. Proposition 4.3

gives a condition under which such an ideal is closed. From this result we derive the main theorem of this section, which concerns the role Rad \mathcal{C}^* plays in the description of the closure of a ideal.

The first lemma is a special case of 4.3.

4.1. Lemma. Suppose C is connected and I is an ideal of C^* which contains a finitely generated dense ideal. If C/I^{\perp} is a semisimple C-comodule, then I is finite dimensional.

Proof. We have the commutative diagram



where $D = I^{\perp}$. If $G(C) = \{1\}$ then $\mathcal{C}_0 = k \cdot 1 \otimes 1$. By 1.2.3, C/D is in fact a \mathcal{C}_0 -comodule. Thus if $(C/D, \omega)$ is the underlying \mathcal{C} -comodule structure on C/D, then $\omega(\overline{c}) = 1 \otimes 1 \otimes \overline{c}$ for all $c \in C$. This means $\sum c_{(1)} \otimes c_{(3)} \otimes c_{(2)} - 1 \otimes 1 \otimes c \in \ker \pi = C \otimes C \otimes D$ or

$$\sum c_{(1)} \otimes c_{(2)} \otimes c_{(3)} - 1 \otimes c \otimes 1 \in C \otimes D \otimes C$$
 for $c \in C$.

If $f \in I$ then f(D) = (0); so, given $a, b \in C^*$,

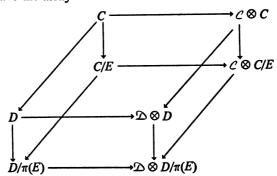
$$\langle a*f*b,c\rangle = \langle a*b,1\rangle\langle f,c\rangle$$
 for each $c\in C$

which implies $a * f * b = \langle a * b, 1 \rangle f$. Therefore any subspace of I is an ideal, so I is finite dimensional by assumption. Q.E.D.

To reduce 4.3 to the connected case we will need the following technical lemma.

4.2. Lemma. Let D be connected and π : $C \to D$ a surjective coalgebra map with $\pi(C_0) = D_0$. If E is a subcoalgebra of C and C/E is a semisimple \mathcal{L} -comodule then $D/\pi(E)$ is a semisimple \mathfrak{D} -comodule.

Proof. We have the array



with commuting top and sides, hence the bottom diagram commutes. Now $\mathcal{C}_0 \subset C_0 \otimes C_0$ so if $\Pi: \mathcal{C} \to \mathcal{D}$ is the induced coalgebra map, $\Pi(\mathcal{C}_0) \subset \pi(C_0) \otimes \pi(C_0) = \mathcal{D}_0$ since D is connected. Therefore $\Pi^*(\operatorname{Rad} \mathcal{D}^*) \subset \operatorname{Rad} \mathcal{C}^*$. Using the bottom of the above array we have the commutative diagram

$$C/E \xrightarrow{\Pi^{\bullet}(f) \otimes I} C/E \xrightarrow{D/\pi(E)} D/\pi(E) \xrightarrow{D} D/\pi(E)$$

for any $f \in \mathcal{D}^*$. Therefore, if $f \in \text{Rad } \mathcal{D}^*$, by 1.2.4, $\bar{d} \leftarrow f = 0$ for all $d \in D$. This means again by 1.2.4 that $D/\pi(E)$ is semisimple. Q.E.D.

4.3. Proposition. Let C be a coalgebra, I an ideal of C* with Rad(I) cofinite and which contains a finitely generated dense ideal. If C/I^{\perp} is a semisimple C-comodule, then I is closed.

Proof. Let $C \to^{\pi} C/D = N$ be the projection where $D = I^{\perp}$. Write $C_0 = E_1 \oplus D_0$. Since N is semisimple, $\pi(E_1) \oplus M = N$ for some subcomodule M of N. By 2.1.2, $E_2 = \pi^{-1}(M)$ is a subcoalgebra of C, and

$$E_1 \cap E_2 = E_1 \cap D = E_1 \cap D_0 = (0).$$

Therefore $C^* = E_1^* \times E_2^*$. Let $u: C^* \to E_2^*$ be the restriction map. Now $J = \operatorname{Rad}(I)$ is closed by 2.1.7 so $\ker u \subset J$ since $J^{\perp} = D_0 \subset E_2$. From this it is easy to see that $\ker u \subset I$. Therefore $I = u^{-1}(u(I))$. Clearly u(I) satisfies the hypothesis of the proposition. The map $E_2 \to^{\pi} C/D$ is a map of comodules; therefore $M = \pi(E_2)$ is a semisimple \mathcal{E}_2 -comodule. Hence to prove the proposition we may assume $C = E_2$. But also notice $u(I)^{\perp} = I^{\perp} = D$ and

$$(E_2)_0 = C_0 \cap E_2 = (E_1 \oplus D_0) \cap E_2 = D_0 \cap E_2 = D_0.$$

Thus

4.4. To prove 4.3 we may assume in addition that C is almost connected and $I \subset \text{Rad } C^*$.

Now assume the additional hypothesis. If we can reduce to the connected case we will be done by 4.1.

Let $\overline{C} = R(C) = C/C_0^+$ and $C \to^{\rho} \overline{C}$ be the projection. Suppose $\rho^* = f$: $\overline{C}^* \to C^*$ is the induced algebra map; set $\gamma = f^{-1}(I)$ and $\mathcal{L} = f^{-1}(L)$ where $L \subset I$ is a finitely generated ideal dense in I. Then $I = f(\gamma)$ and $L = f(\mathcal{L})$ since $f(\overline{C}^*) = \text{Rad } C^* \oplus k \cdot 1$. Now f is continuous and linearly closed so

$$f(\overline{\mathcal{L}}) = \overline{f(\mathcal{L})} = \overline{L} = \overline{I} = f(\overline{\gamma})$$

which implies that \mathcal{L} is dense in γ . Since $\dim(C^*/\overline{C}^*) < \infty$ we have $C^* \otimes C^{*op}$ is a finitely generated left $\overline{C}^* \otimes \overline{C}^{*op}$ -module. This means γ is a finitely generated

ideal of \overline{C}^* . To show $I = f(\gamma)$ is closed we need only show that γ is closed. Since $\rho(I^{\perp}) = \gamma^{\perp}$ by 4.2, $\overline{C}/\gamma^{\perp}$ is a semisimple \overline{C} -comodule. Thus we may assume $C = \overline{C} = R(C)$ and the reduction to the connected case is complete. Q.E.D.

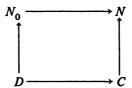
Now we come to the main result of this section. The proof is a reduction to the previous proposition.

4.5. Theorem. Suppose C is a coalgebra, I an ideal of C^* with Rad(I) cofinite and which contains a finitely generated dense ideal. Then $\mathcal{A} \cdot I = \overline{I}$.

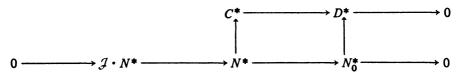
Proof. The projection $\pi: C \to C/I^{\perp} = N$ is a surjection of \mathcal{C} -comodules since I^{\perp} is a subcoalgebra. Since $\pi^*(N^*) = \overline{I}$ we see that N^* is a finitely generated \mathcal{C}^* -module since I contains a finitely generated dense ideal.

Set $D = \pi^{-1}(N_0)$. Then D is a subcoalgebra of C.

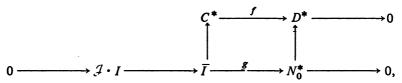
We derive from the commutative diagram



the commutative diagram



with bottom row exact by 1.2.5. Since $\mathcal{J} \cdot I = \mathcal{J} \cdot (\mathcal{C}^* \cdot I) = \mathcal{J} \cdot \overline{I}$ we have the commutative diagram



where f is the restriction map.

Now $\mathcal{R} \cdot I = g^{-1}(g(\overline{I}))$. Therefore to show $\mathcal{R} \cdot I = \overline{I}$ we need only show $g(I) = g(\overline{I})$, or equivalently $f(I) = f(\overline{I})$. Since f is continuous and linearly closed $f(\overline{I}) = \overline{f(I)}$. Thus it suffices to show that f(I) is closed. It is clear f(I) is an ideal of D^* which satisfies the hypotheses of the theorem. Thus we may assume C = D. Observe $N_0 = \pi(D) = D/I^{\perp}$ is a semisimple \mathcal{D} -comodule, since $\pi: D \to N_0$ is a surjective \mathcal{C} -comodule map. Since $f(I)^{\perp} = I^{\perp}$ we are reduced to Proposition 4.3. Q.E.D.

4.6. Corollary. Let I be a cofinite ideal of C^* which contains a finitely generated dense ideal. Then $\overline{I} = u_1 \cdot I + \cdots + u_{\gamma} \cdot I$ for some units u_1, \ldots, u_{γ} of \mathcal{R} .

For any ideal I of C^* let I denote the sum of the \mathcal{R} -submodules of I. Then for $a \in I$ the computation $\mathcal{R} \cdot (a) = (a) + \mathcal{J} \cdot a$ shows that I is also an ideal.

4.7. Corollary. Let I be a cofinite ideal of C^* which contains a finitely generated dense ideal. Then I is closed if and only if $Rad(\underline{I})$ is cofinite and closed.

Proof. (\Rightarrow) This is clear since Rad(I) = Rad(I) is closed in this case by 2.1.7. (\Leftarrow) Suppose Rad(I) is cofinite and closed. Let $u: C^* \to C_0^*$ be the projection. Then u(I) = u(Rad(I)), so u(I) = u((a)) for some $a \in I$. But Rad((a)) = Rad(I) which implies $\overline{(a)} = \mathcal{R} \cdot (a) \subset I$ by 4.5. Let $D = (a)^{\perp}$. Then $D_0 = \text{Rad}(I)^{\perp}$ is finite dimensional and $0 \to \mathcal{R} \cdot (a) \to C^* \to^{\pi} D^* \to 0$ is exact. D is reflexive (see 4.2.6 of [2]) so $I = \pi^{-1}(\pi(I))$ is closed. Q.E.D.

REFERENCES

- 1. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857.
- 2. R. G. Heyneman and D. E. Radford, Reflexivity and coalgebras of finite type, J. Algebra 28 (1974), 215-246.
- 3. R. G. Heyneman and M. E. Sweedler, Affine Hopf algebras. I, J. Algebra 13 (1969), 192-241. MR 39 #6876.
 - 4. D. E. Radford, Coreflexive coalgebras, J. Algebra 26 (1973), 512-535.
- 5. J. R. Sullivan, The uniqueness of integrals for Hopf algebras and some existence theorems of integrals for commutative Hopf algebras, J. Algebra 19 (1971), 426-440.
- 6. M. E. Sweedler, *Hopf algebras*, Math. Lecture Note Series, Benjamin, New York, 1969. MR 40 #5705.
 - 7. E. J. Taft and R. L. Wilson, On antipodes in pointed Hopf algebras (to appear).

DEPARTMENT OF MATHEMATICS, LAWRENCE UNIVERSITY, APPLETON, WISCONSIN 54911